Facebook Twitter Pinterest linkedin Telegram
Preferred high edu-tech solution providers to the Nordic region
DevinSense We Kickstart our customers ability to create value in EDUCATION, RESEARCH and DEVELOPMENT
Login / Register
Wishlist
0 Compare
0 items / €0,00
Menu
DevinSense We Kickstart our customers ability to create value in EDUCATION, RESEARCH and DEVELOPMENT
0 items / €0,00
  • Home
  • Products
    • Engineering Experiments TecQuipment
    • Quanser Prod Category
    • Quanser Lab Solutions
    • Quanser Digital Experiences
    • Motion Capture
    • MANUS
    • Kinova Robot
    • Haptics
    • Geomagic Software (CAD)
    • Medical Simulators
  • Quote requests
    • Medical Simulators
    • Quanser
    • OptiTrack
    • TecQuipment
    • Haptics
  • NEWS
  • Job Offers
  • ABOUT US
    • Our Company
    • Customer installations
    • Our Partners
    • Questions & Answers
    • DevinSense Legals
  • Events&Webinars
Call us: +46 76 2099221
Email: info@DevinSense.com
Click to enlarge
HomeQuanser Prod CategoryAerospace Quanser AERO myRIO
Previous product
QLabs Virtual Rotary Servo
Back to products
Next product
QUBE – Servo 2 myRIO
Quanser

Quanser AERO myRIO

The experiment is reconfigurable for various aerospace systems, from 1 DOF and 2 DOF helicopter to half-quadrotor. Integrating Quanser-developed QFLEX 2 computing interface technology, the Quanser AERO also offers flexibility in lab configurations, using a PC, or microcontrollers, such as NI myRIO, Arduino and Raspberry Pi. With the comprehensive course materials included, you can build a state-of-the-art teaching lab for your mechatronics or control courses, engage students in various design and capstone projects, and validate your research concepts on a high-quality, robust, and precise platform.

Brand

Quanser

Compare
Add to wishlist
  • Description
Description

A fully integrated dual-motor lab experiment, designed for advanced control research and aerospace applications, with QFLEX 2 myRIO Interface Panel.Includes User Manual, Quick Start Guide, Instructor and Student Workbooks, and Laboratory Guide, and pre-designed controllers. System Configuration: For operation, the system requires:- NI myRIO embedded device

Categories: Aerospace, Aerospace Control & Dynamics, Control Systems, Mechatronics
Share
Facebook Twitter Pinterest linkedin Telegram

Related products

New
Compare
Close

QLabs Controls

QLabs Controls is a collection of virtual laboratory activities that supplement traditional or online control systems courses. The virtual hardware labs are based on Quanser QUBE-Servo 2 and Quanser AERO systems which allows you to combine physical and virtual plants to enrich lectures and in-lab activities and increases engagement and students’ learning outcomes in class-based or online courses.
Add to wishlist
Read more
Quote
Quick view
Compare
Close

Linear Flexible Joint

The Linear Flexible Joint experiment will help your students learn how to model and control real-world dynamic systems such as flexible couplings and gearboxes.
Add to wishlist
Read more
Quote
Quick view
Hot
Compare
Close

Quanser AERO USB

The experiment is reconfigurable for various aerospace systems, from 1 DOF and 2 DOF helicopter to half-quadrotor. Integrating Quanser-developed QFLEX 2 computing interface technology, the Quanser AERO also offers flexibility in lab configurations, using a PC, or microcontrollers, such as NI myRIO, Arduino and Raspberry Pi. With the comprehensive course materials included, you can build a state-of-the-art teaching lab for your mechatronics or control courses, engage students in various design and capstone projects, and validate your research concepts on a high-quality, robust, and precise platform.
Add to wishlist
Read more
Quote
Quick view
Compare
Close

2 DOF Robot

The 2 DOF Robot module is connected to two Rotary Servo Base Units, which are mounted at a fixed distance. Two servomotors on the Rotary Servo Base Units are mounted at a fixed distance and control a 4-bar linkage system: two powered arms coupled through two non-powered arms. The system is planar and has two actuated and three unactuated revolute joints. The goal of the 2 DOF Robot experiment is to manipulate the X-Y position of a four-bar linkage end effector. Such a system is similar to the kinematic problems encountered in the control of other parallel mechanisms that have singularities.
Add to wishlist
Read more
Quote
Quick view
Compare
Close

Rotary Double Inverted Pendulum

The Double Inverted Pendulum module is composed of a rotary arm that attaches to the Rotary Servo Base Unit, a short 7-inch bottom blue rod, an encoder hinge, and the top 12-inch blue rod. The balance control computes a voltage based on the angle measurements from the encoders. This control voltage signal is amplified and applied to the Servo motor. The rotary arm moves accordingly to balance the two links and the process repeats itself.
Add to wishlist
Read more
Quote
Quick view
New
Compare
Close

QLabs Virtual Ball and Beam

Same as the physical Ball and Beam, the virtual system features a track on which a ball is free to roll. The track is effectively a potentiometer, outputting a voltage proportional to the position of the ball. The tilt angle of the track is controlled by the Rotary Servo’s DC motor.
Add to wishlist
Read more
Quote
Quick view
Compare
Close

Magnetic Levitation

The force between electromagnet and ball is highly nonlinear. Further, the electromagnet itself has its own dynamics that must be compensated for. The challenging dynamics of the system make it perfect for teaching modeling, linearization, current control, position control, and using multiple loops (i.e. cascade control). It could also be used to test and implement more advanced control strategies, such as multi-variable, gain scheduling, and nonlinear control.
Add to wishlist
Read more
Quote
Quick view
HotNew
Compare
Close

QLabs Virtual Quanser AERO

Same as the physical Quanser AERO, the virtual system is a dual-rotor helicopter model that can be reconfigured for 1 DOF attitude, 2 DOF helicopter, or half-quadrotor experiments. Rotary encoders measure the angular position of the propeller DC motors, the speed of the motors is measured through a software-based tachometer.
Add to wishlist
Read more
Quote
Quick view
TecQuipment
Quanser
OptiTrack
MANUS
IntelligentUltraSound
3DSystems
DevinSense_logga

The preferred EduTech, solution provider to technical universities and hospitals in the Nordic.

Veddestavägen 19, Järfälla, Sweden
Phone: (+46) 762099221
info@devinsense.com
Facebook Twitter Instagram YouTube Pinterest

PARTNERS

  • QUANSER
  • TECQUIPMENT
  • OPTITRACK
  • HAPTICS

HI, HOW CAN WE HELP?

Call me:
+46 (0)76 2099221

wood-gallery-placeholder-5

Join Our Newsletter Now

Be the First to Know. Sign up to newsletter today

DevinSense AB Created by DevinSense AB
  • Home
  • Products
    • Engineering Experiments TecQuipment
    • Quanser Prod Category
    • Quanser Lab Solutions
    • Quanser Digital Experiences
    • Motion Capture
    • MANUS
    • Kinova Robot
    • Haptics
    • Geomagic Software (CAD)
    • Medical Simulators
  • Quote requests
    • Medical Simulators
    • Quanser
    • OptiTrack
    • TecQuipment
    • Haptics
  • NEWS
  • Job Offers
  • ABOUT US
    • Our Company
    • Customer installations
    • Our Partners
    • Questions & Answers
    • DevinSense Legals
  • Events&Webinars
  • Wishlist
  • Compare
  • Login / Register

Shopping cart

close

Sign in

close

Lost your password?
No account yet? Create an Account
Scroll To Top
We use cookies to improve your experience on our website. By browsing this website, you agree to our use of cookies.
Accept