A fully integrated dual-motor lab experiment, designed for advanced control research and aerospace applications, with QFLEX 2 USB Interface Panel.Includes User Manual, Quick Start Guide, Instructor and Student Workbooks, and Laboratory Guide, and pre-designed controllers. System Configuration for Simulink: For operation, the system requires:- QUARC real-time control software (version 2.5.1637 or later required)
Hot
Quanser AERO USB
The experiment is reconfigurable for various aerospace systems, from 1 DOF and 2 DOF helicopter to half-quadrotor. Integrating Quanser-developed QFLEX 2 computing interface technology, the Quanser AERO also offers flexibility in lab configurations, using a PC, or microcontrollers, such as NI myRIO, Arduino and Raspberry Pi. With the comprehensive course materials included, you can build a state-of-the-art teaching lab for your mechatronics or control courses, engage students in various design and capstone projects, and validate your research concepts on a high-quality, robust, and precise platform.
Brand | Quanser |
---|
Categories: Aerospace, Aerospace Control & Dynamics, Control Systems, Mechatronics
Related products
QLabs Virtual Ball and Beam
Same as the physical Ball and Beam, the virtual system features a track on which a ball is free to roll. The track is effectively a potentiometer, outputting a voltage proportional to the position of the ball. The tilt angle of the track is controlled by the Rotary Servo’s DC motor.
Linear Flexible Inverted Pendulum
The linear flexible inverted pendulum challenges students to gain advanced modeling and control experience by controlling both the damping of a flexible link, and an unstable inverted pendulum.
Coupled Tanks
Designed in association with Prof. Karl Åström and Prof. Karl Henrik Johansson, the Coupled Tanks system consists of a single pump with two tanks. Each tank is instrumented with a pressure sensor to measure the water level. The pump drives the water from the bottom basin up to the top of the system. Depending on how the outflow valves are configured, the water then flows to the top tank, bottom tank, or both. The rate of flow can also be changed using outflow orifices with different diameters. The ability to direct water flow, together with variable outflow orifices allows for several interesting Single Input Single Output (SISO) configurations. Further, two or more Coupled Tanks can be combined together for Multiple Input Multiple Output (MIMO) experiments.
QUBE – Servo 2 Embedded
Integrating Quanser-developed QFLEX 2 computing interface technology, QUBE-Servo 2 provides more flexibility in lab configurations, using a PC, or microcontrollers, such as NI myRIO, Arduino and Raspberry Pi. With the comprehensive course materials included, you can build a state-of-the-art undergraduate teaching lab for your mechatronics or control courses, and engage students in various design and capstone projects.
Magnetic Levitation
The force between electromagnet and ball is highly nonlinear. Further, the electromagnet itself has its own dynamics that must be compensated for. The challenging dynamics of the system make it perfect for teaching modeling, linearization, current control, position control, and using multiple loops (i.e. cascade control). It could also be used to test and implement more advanced control strategies, such as multi-variable, gain scheduling, and nonlinear control.
QUBE – Servo 2 myRIO
The experiment is reconfigurable for various aerospace systems, from 1 DOF and 2 DOF helicopter to half-quadrotor. Integrating Quanser-developed QFLEX 2 computing interface technology, the Quanser AERO also offers flexibility in lab configurations, using a PC, or microcontrollers, such as NI myRIO, Arduino and Raspberry Pi. With the comprehensive course materials included, you can build a state-of-the-art teaching lab for your mechatronics or control courses, engage students in various design and capstone projects, and validate your research concepts on a high-quality, robust, and precise platform.
3 DOF Gyroscope
The 3 DOF Gyroscope consists of a disk mounted inside an inner gimbal which in turn is mounted inside an outer gimbal. The entire structure is supported by a rectangular frame that is free to rotate about its vertical axis of using a slip ring design. The gimbals are also equipped with slip rings, allowing them to rotate freely and giving the disk three degrees of freedom. The plant is equipped with four DC motors and four encoders, with the ability to fix individual axis. Axes positions are measured using high-resolution optical encoders. Although the gimbals and outer frame are free to rotate, the plant provides the ability to fix any desired axis (outer frame, red and blue gimbals).
2 DOF Inverted Pendulum
The 2 DOF Inverted Pendulum module consists of an instrumented 2 DOF joint to which a 12-inch rod is mounted. The rod is free to swing about two orthogonal axes. The module is attached to two Rotary Servo Base Units. Their servomotors’ output shafts are coupled through a four-bar linkage, i.e., 2 DOF Robot module, resulting in a planar manipulator robot. The 2 DOF Joint is attached to the end effector of the robot arms.
The goal of the 2 DOF Inverted Pendulum experiment is to command the position of the 2 DOF Robot end effector to balance the pendulum. By measuring the deviations of the vertical pendulum, a controller can be used to rotate the servos, so that the position of the end effector balances the pendulum.