The Quanser Controls Board offers a complete package for studying fundamental and advanced controls topics. The skills and hands-on experiences gained using the controls board are directly applicable to the challenges engineers face creating the complex systems that dominate the world today.
Quanser Controls Board
As automation and connected devices move from industry to commercial products and the home, an understanding of the design and implementation of control systems on hardware is essential. The courseware progression that accompanies the Quanser Controls Board begins with a grounding in the basics of modeling and control. Topics then transition into more complex strategies including optimal control, hybrid control, and digital control.
Brand | Quanser |
---|
Categories: Control Systems, NI ELVIS III Boards
Related products
Quanser AERO USB
The experiment is reconfigurable for various aerospace systems, from 1 DOF and 2 DOF helicopter to half-quadrotor. Integrating Quanser-developed QFLEX 2 computing interface technology, the Quanser AERO also offers flexibility in lab configurations, using a PC, or microcontrollers, such as NI myRIO, Arduino and Raspberry Pi. With the comprehensive course materials included, you can build a state-of-the-art teaching lab for your mechatronics or control courses, engage students in various design and capstone projects, and validate your research concepts on a high-quality, robust, and precise platform.
QLabs Virtual Rotary Servo
Same as the physical Rotary Servo Base Unit, the virtual system features a DC motor that drives a smaller pinion gear. This gear is fixed to a larger middle gear that rotates on the load shaft. The position of the load shaft is measured using a high-resolution optical encoder or a potentiometer.
QLabs Virtual Ball and Beam
Same as the physical Ball and Beam, the virtual system features a track on which a ball is free to roll. The track is effectively a potentiometer, outputting a voltage proportional to the position of the ball. The tilt angle of the track is controlled by the Rotary Servo’s DC motor.
QLabs Virtual Quanser AERO
Same as the physical Quanser AERO, the virtual system is a dual-rotor helicopter model that can be reconfigured for 1 DOF attitude, 2 DOF helicopter, or half-quadrotor experiments. Rotary encoders measure the angular position of the propeller DC motors, the speed of the motors is measured through a software-based tachometer.
QLabs Virtual Coupled Tanks
Same as the physical Coupled Tanks, the virtual system features a single pump and two tanks. Each tank is instrumented with a pressure sensor to measure the liquid level. The different outflow valves configurations allow to direct the flow of the liquid, while the flow rate can be changed by using outflow orifices of different diameters.
QLabs Virtual QArm
Same as the physical QArm, the virtual system is a 4 DOF serial robotic manipulator with a tendon-based two-stage gripper and an RGBD camera.
3 DOF Gyroscope
The 3 DOF Gyroscope consists of a disk mounted inside an inner gimbal which in turn is mounted inside an outer gimbal. The entire structure is supported by a rectangular frame that is free to rotate about its vertical axis of using a slip ring design. The gimbals are also equipped with slip rings, allowing them to rotate freely and giving the disk three degrees of freedom. The plant is equipped with four DC motors and four encoders, with the ability to fix individual axis. Axes positions are measured using high-resolution optical encoders. Although the gimbals and outer frame are free to rotate, the plant provides the ability to fix any desired axis (outer frame, red and blue gimbals).
2 DOF Ball Balancer
The 2 DOF Ball Balancer module consists of a plate on which a ball can be placed and is free to move. Two Rotary Servo Base Units are connected to the sides of the plate using 2 DOF gimbals. The plate can swivel about in any direction. By controlling the position of the servo load gears, the tilt angle of the plate can be adjusted to balance the ball to a desired planar position.
The digital camera mounted overhead captures two-dimensional images of the plate and track coordinates of the ball in real time. Images are transferred quickly to the PC via a FireWire connection. Students can make the ball track various trajectories (a circle, for example), or even stabilize the ball when it is thrown onto the plate using the controller provided with the experiment.