Facebook Twitter Pinterest linkedin Telegram
Preferred high edu-tech solution providers to the Nordic region
DevinSense We Kickstart our customers ability to create value in EDUCATION, RESEARCH and DEVELOPMENT
Login / Register
Wishlist
0 Compare
0 items / €0,00
Menu
DevinSense We Kickstart our customers ability to create value in EDUCATION, RESEARCH and DEVELOPMENT
0 items / €0,00
  • Home
  • Products
    • Engineering Experiments TecQuipment
    • Quanser Prod Category
    • Quanser Lab Solutions
    • Quanser Digital Experiences
    • Motion Capture
    • MANUS
    • Kinova Robot
    • Haptics
    • Geomagic Software (CAD)
    • Medical Simulators
  • Quote requests
    • Medical Simulators
    • Quanser
    • OptiTrack
    • TecQuipment
    • Haptics
  • NEWS
  • Job Offers
  • ABOUT US
    • Our Company
    • Customer installations
    • Our Partners
    • Questions & Answers
    • DevinSense Legals
  • Events&Webinars
Call us: +46 76 2099221
Email: info@DevinSense.com
Click to enlarge
HomeQuanser Prod CategoryRotary Motion Platform Rotary Flexible Link
Previous product
QUBE – Servo 2 myRIO
Back to products
Next product
Shake Table II
Quanser

Rotary Flexible Link

The Rotary Flexible Link consists of a strain gage which is held at the clamped end of a thin stainless steel flexible link. The DC motor on the Rotary Servo Base Unit is used to rotate the flexible link from one end in the horizontal plane. The motor end of the link is instrumented with a strain gage that can detect the deflection of the tip. The strain gage outputs an analog signal proportional to the deflection of the link. In this experiment, students learn to find the stiffness experimentally, and use Lagrange to develop the system model. This is then used to develop a feedback control using a linear-quadratic regulator, where the tip of a beam tracks a desired command while minimizing link deflection.

Brand

Quanser

Compare
Add to wishlist
  • Description
Description

The Rotary Flexible Link module is designed to help students perform flexible link control experiments. The module is designed to be mounted on the Rotary Servo Base Unit. This experiment is ideal for the study of vibration analysis and resonance and allows to mimic real-life control problems encountered in large, lightweight structures that exhibit flexibilities and require feedback control for improved performance. The experiment is also useful when modeling a flexible link on a robot or spacecraft.

Categories: Control Systems, Rotary Motion Platform
Share
Facebook Twitter Pinterest linkedin Telegram

Related products

New
Compare
Close

QLabs Virtual QUBE-Servo 2

Same as the physical QUBE-Servo 2, the virtual system features a DC motor with the inertia disk and inverted pendulum modules. Rotary encoders measure the angular position of the DC motor and pendulum. The motor angular velocity is measured through a software-based tachometer.
Add to wishlist
Read more
Quote
Quick view
Compare
Close

Linear Flexible Inverted Pendulum

The linear flexible inverted pendulum challenges students to gain advanced modeling and control experience by controlling both the damping of a flexible link, and an unstable inverted pendulum.
Add to wishlist
Read more
Quote
Quick view
Compare
Close

Linear Flexible Joint with Inverted Pendulum

The Linear Flexible Joint with Inverted Pendulum combines two fundamental control challenges to give students an opportunity to a more advanced modeling and control challenge.
Add to wishlist
Read more
Quote
Quick view
Compare
Close

Magnetic Levitation

The force between electromagnet and ball is highly nonlinear. Further, the electromagnet itself has its own dynamics that must be compensated for. The challenging dynamics of the system make it perfect for teaching modeling, linearization, current control, position control, and using multiple loops (i.e. cascade control). It could also be used to test and implement more advanced control strategies, such as multi-variable, gain scheduling, and nonlinear control.
Add to wishlist
Read more
Quote
Quick view
Compare
Close

QUBE – Servo 2 myRIO

The experiment is reconfigurable for various aerospace systems, from 1 DOF and 2 DOF helicopter to half-quadrotor. Integrating Quanser-developed QFLEX 2 computing interface technology, the Quanser AERO also offers flexibility in lab configurations, using a PC, or microcontrollers, such as NI myRIO, Arduino and Raspberry Pi. With the comprehensive course materials included, you can build a state-of-the-art teaching lab for your mechatronics or control courses, engage students in various design and capstone projects, and validate your research concepts on a high-quality, robust, and precise platform.
Add to wishlist
Read more
Quote
Quick view
Compare
Close

2 DOF Gantry

The 2 DOF Inverted Pendulum/Gantry module is ideal to introduce more advanced principles of robotics. You can use it to
Add to wishlist
Read more
Quote
Quick view
New
Compare
Close

QLabs Virtual Coupled Tanks

Same as the physical Coupled Tanks, the virtual system features a single pump and two tanks. Each tank is instrumented with a pressure sensor to measure the liquid level. The different outflow valves configurations allow to direct the flow of the liquid, while the flow rate can be changed by using outflow orifices of different diameters.
Add to wishlist
Read more
Quote
Quick view
Compare
Close

Quanser AERO Embedded

The experiment is reconfigurable for various aerospace systems, from 1 DOF and 2 DOF helicopter to half-quadrotor. Integrating Quanser-developed QFLEX 2 computing interface technology, the Quanser AERO also offers flexibility in lab configurations, using a PC, or microcontrollers, such as NI myRIO, Arduino and Raspberry Pi. With the comprehensive course materials included, you can build a state-of-the-art teaching lab for your mechatronics or control courses, engage students in various design and capstone projects, and validate your research concepts on a high-quality, robust, and precise platform.
Add to wishlist
Read more
Quote
Quick view
TecQuipment
Quanser
OptiTrack
MANUS
IntelligentUltraSound
3DSystems
DevinSense_logga

The preferred EduTech, solution provider to technical universities and hospitals in the Nordic.

Veddestavägen 19, Järfälla, Sweden
Phone: (+46) 762099221
info@devinsense.com
Facebook Twitter Instagram YouTube Pinterest

PARTNERS

  • QUANSER
  • TECQUIPMENT
  • OPTITRACK
  • HAPTICS

HI, HOW CAN WE HELP?

Call me:
+46 (0)76 2099221

wood-gallery-placeholder-5

Join Our Newsletter Now

Be the First to Know. Sign up to newsletter today

DevinSense AB Created by DevinSense AB
  • Home
  • Products
    • Engineering Experiments TecQuipment
    • Quanser Prod Category
    • Quanser Lab Solutions
    • Quanser Digital Experiences
    • Motion Capture
    • MANUS
    • Kinova Robot
    • Haptics
    • Geomagic Software (CAD)
    • Medical Simulators
  • Quote requests
    • Medical Simulators
    • Quanser
    • OptiTrack
    • TecQuipment
    • Haptics
  • NEWS
  • Job Offers
  • ABOUT US
    • Our Company
    • Customer installations
    • Our Partners
    • Questions & Answers
    • DevinSense Legals
  • Events&Webinars
  • Wishlist
  • Compare
  • Login / Register

Shopping cart

close

Sign in

close

Lost your password?
No account yet? Create an Account
Scroll To Top
We use cookies to improve your experience on our website. By browsing this website, you agree to our use of cookies.
Accept